色综合天天综合狠狠爱-国产av精国产传媒-沈樵精品国产成av片-深夜福利成人-亚洲日韩欧美国产另类综合-国产视频a-精品黄色片-中文字幕亚洲欧美日韩2019-色欲蜜桃av无码中文字幕-人人鲁人人莫一区二区三区-天堂乱码一二三区-亚洲一区二区三区香蕉-成年人网站在线-99精品国产99久久久久久51-成人免费网站视频ww破解版-无人在线观看的免费高清视频-欧美一区二区三区久久-久久久新视频-国产精品无码一区二区在线看-久久亚洲在线

較為安全的離子液體型發動機燃料——多氰基離子液體

2024-03-10 11:24:45 Monionic離子液體 8

Dicyanamide [N(CN)2] is a common anionic component of ionic liquids, several of which have shown hypergolic reactivity upon mixing with white-fuming nitric acid. In this study, we explore the thermochemistry of dicyanamide and its reactivity with nitric acid and other molecules to gain insight into the initial stages of the hypergolic phenomenon. We have developed and utilized an electrospray ion source for our selected ion flow tube (SIFT) to generate the dicyanamide anion. We have explored the general reactivity of this ion with several neutral molecules and atoms. Dicyanamide does not show reactivity with O2, H2SO4, H2O2, DBr, HCl, NH3, N2O, SO2, COS, CO2, CH3OH, H2O, CH4, N2, CF4, or SF6 (k < 1 × 10–12 cm3/s); moreover, dicyanamide does not react with N atom, O atom, or electronically excited molecular oxygen (k < 5 × 10–12 cm3/s), and our previous studies showed no reactivity with H atom. However, at 0.45 Torr helium, we observe the adduct of dicyanamide with nitric acid with an effective bimolecular rate constant of 2.7 × 10–10 cm3/s. Intrinsically, dicyanamide is a very stable anion in the gas phase, as illustrated by its lack of reactivity, high electron-binding energy, and low proton affinity. The lack of reactivity of dicyanamide with H2SO4 gives an upper limit for the gas-phase deprotonation enthalpy of the parent compound (HNCNCN; <310 ± 3 kcal/mol). This limit is in agreement with theoretical calculations at the MP2/6-311++G(d,p) level of theory, finding that ΔH298?K(HNCNCN) = 308.5 kcal/mol. Dicyanamide has two different proton acceptor sites. Experimental and computational results indicate that it is lower in energy to protonate the terminal nitrile nitrogen than the central nitrogen. Although proton transfer to dicyanamide was not observed for any of the acidic molecules investigated here, the calculations on dicyanamide with one to three nitric acid molecules reveal that higher-order solvation can favor exothermic proton transfer. Furthermore, the formation of 1,5-dinitrobiuret, proposed to be the key intermediate during the hypergolic ignition of dicyanamide ionic liquids with nitric acid, is investigated by calculation of the reaction coordinate. Our results suggest that solvation dynamics of dicyanamide with nitric acid play an important role in hypergolic ignition and the interactions at the droplet/condensed-phase surface between the two hypergolic liquids are very important. Moreover, dicyanamide exists in the atmosphere of Saturn’s moon, Titan; the intrinsic stability of dicyanamide strongly suggests that it may exist in molecular clouds of the interstellar medium, especially in regions where other stable carbon–nitrogen anions have been detected.

images_medium_jp-2015-124967_0007.gif

默尼化工科技(上海)有限公司

致力于離子液體(ILs)研發生產、應用推廣和全球銷售,擁有自主知識產權生產技術,產品質量和一致性因此得到保障,Tel:021-38228895